
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Bondi Finance

Collaborative Audit Prepared For: Bondi Finance
Lead Security Expert(s): iamnmt

jennifer37
Date Audited: September 8 - September 15, 2025
Final Commit: 1508e56

1

https://github.com/iamnmt
https://github.com/johnson37
https://github.com/ASMAK-Bilisim/bondi-contracts-audit-v2/tree/1508e56108c826c44be0ffb2b40261ada7be610f

Introduction
Bondi Finance tokenizes publicly traded corporate bonds as fully fungible ERC-20 Bond
Tokens, making fixed income previously reserved for institutions accessible on-chain.
This audit focuses on the v2 contracts, including crowdfunding via the funding module,
programatic refunds in case of failed funding, Bond Token distribution, AccountingToken
mirroring, Merkle-based coupon distribution, and multichain deployment with local Bond
Token issuance with zero bridges or cross-chain messaging.

Scope
Repository: ASMAK-Bilisim/bondi-contracts-audit-v2

Audited Commit: 7c6b42209b2e3fde82fbcc172bc2ac772caf72da

Final Commit: 1508e56108c826c44be0ffb2b40261ada7be610f

Files:

• contracts/AccountingToken.sol

• contracts/BondToken.sol

• contracts/Distribution.sol

• contracts/document-management/upgradeable/ERC1643Upgradeable.sol

• contracts/FpUSD.sol

• contracts/Funding.sol

• contracts/Handler.sol

• contracts/InvestorNFT.sol

• contracts/kyc/IKYCRegister.sol

• contracts/kyc/KYCRegister.sol

• contracts/upgrades/Proxies.sol

Final Commit Hash
1508e56108c826c44be0ffb2b40261ada7be610f

Findings
Each issue has an assigned severity:

• High issues are directly exploitable security vulnerabilities that need to be fixed.

2

https://github.com/ASMAK-Bilisim/bondi-contracts-audit-v2/tree/1508e56108c826c44be0ffb2b40261ada7be610f

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

Issues Found

High Medium Low/Info

1 6 3

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

Auditors’ Note
The Bondi Finance v2 smart contracts have undergone a comprehensive security review.
This release builds on a production-proven foundation: v1 successfully raised and
deployed $205,000 on Base Mainnet, completed a full bond lifecycle, and repaid
investors with principal plus interest.

Core Security Strengths

• Zero Bridge Risk Multichain Design
Funds never leave their origin chain. Cross-chain coordination is handled via
mirrored AccountingTokens and an off-chain watcher, ensuring global target
tracking without exposing assets to bridge exploits

• Battle-Tested Financial Flows
The same funding, extraction, bond purchase, and coupon/principal repayment
logic proven in production is preserved in v2, now enhanced with FpUSD receipts
and Merkle-based distributions

• Defense-in-Depth Role Architecture
Access control follows the principle of least privilege with strict separation:

– Multisig Gnosis Safe holds all admin and fund deposit powers

3

– Backend services (Watcher, Orchestrator, Relayer) are limited to narrow,
non-financial roles

• Verifiable Merkle Distributions
Incentives and coupons are consolidated into a single Merkle root, which anyone
can independently reconstruct to verify accuracy. Users claim through Merkle
proofs, while Bondi’s relayer handles automatic claims for KYC-verified users to
ensure a seamless experience.

• Critical fixes applied and reviewed

– Block-level investment restriction

– Cooldown enforcement

– Immutable funding parameters

– AccountingToken burn safeguard against overflow-DoS

– KYC bypass prevention via automatic bond token blacklisting when KYC is
revoked

– Cross-chain funding sync grace period (6-hour cooldown)

– Token donation DoS prevention via tracked investment amounts

Security Assessment Following these fixes, the contracts now present zero critical
vulnerabilities. All risks have been understood and mitigated, operational responsibilities
are tightly controlled, and every core financial flow has already been validated on-chain.
The codebase is regarded as production-ready.

4

Issue H-1: Funding sync may be blocked
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/18

Summary
Funding sync may be blocked

Vulnerability Detail
Bondi will be deployed on multiple chains, including mantle, base, injective and Plume.
Once we invest funds on one chain, the watcher role will monitor the related event and
trigger mirrorDeposit on all other chains.

We will generate one unique id according to the srcChainId, investor, timestamp. And
we don't allow to use the same id twice to prevent the possible replay attack.

The problem here is that users may invest multiple times on the same chain, the same
block. The watcher role will generate the same id for different transactions, and we will
fail to sync the fund amount among different chains.

/*
* // 84 bytes packed (32 + 20 + 32) → keccak256 � bytes32
* bytes32 depositId = keccak256(
* abi.encodePacked(
* uint256(srcChainId), // EIP‑155 chainId
* address(investor), // depositor
* uint256(timestamp) // unix‑seconds
*)
*);
* /
function mirrorDeposit(uint256 amt, bytes32 id, uint256 srcChain) external

onlyRole(WATCHER_ROLE) {↪→

// Gas optimization: return early if amount is zero
if (amt == 0) return;
if (processed[id]) revert DepositAlreadyProcessed(id);
processed[id] = true;
// Here the amt is 6 decimal.
accountingToken.mint(address(funding), amt);
// Emit event for off-chain tracking
emit DepositMirrored(amt, id, srcChain);

}

Impact
Fail to sync the fund amount among different chains.

5

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/18

Code Snippet
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1
d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Handler.sol#L174-L1
82

Tool Used
Manual Review

Recommendation
1.Add a nonce for each investor, and the nonce should be increased on invest, and the
nonce should be used to derive the depositId 2. Prevent investor to calls invest in a same
block

6

https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Handler.sol#L174-L182
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Handler.sol#L174-L182
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Handler.sol#L174-L182

Issue M-1: Direct token donation enables denial of
service on investment function
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/12

Relevant Context
The Funding contract allows investors to contribute stablecoin tokens through the Fundin
g#invest function during the funding phase. The contract tracks the total raised amount
across multiple chains using the totalRaised() function, which sums the local stablecoin
balance and accounting tokens representing cross-chain deposits. The contract
enforces a strict target amount limit through the checkInvestmentRequirements modifier,
which reverts with FundingExceedsTargetAmount if the investment would cause the total
to exceed the target.

Finding Description
The Funding#invest function is vulnerable to denial of service attacks through direct
token donations to the contract. The vulnerability stems from the target amount
validation in the checkInvestmentRequirements modifier, which checks if (totalRaised
() + investmentAmount_ > targetAmount) and reverts if the condition is true.

The totalRaised() function calculates the total by summing usdToken.balanceOf(addres
s(this)) + accountingToken.balanceOf(address(this)). Since anyone can directly
transfer stablecoin tokens to the contract address without going through the invest
function, an attacker can artificially inflate the usdToken.balanceOf(address(this))
component.

When the total raised amount approaches the targetAmount, an attacker can send as
little as 1 wei of stablecoin directly to the contract. This increases the totalRaised()
value, causing subsequent legitimate invest calls to fail when totalRaised() + investme
ntAmount_ > targetAmount becomes true. The attack is particularly effective when the
remaining investment capacity is small, as the attacker can prevent all future
investments with minimal cost.

Impact
Legitimate investors cannot complete their investments when the funding round is near
completion. The attacker spends only the gas cost and 1 wei of stablecoin to block all
remaining investment attempts, creating a complete denial of service for the investment
functionality.

7

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/12
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L238
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L89

Proof of Concept
1. The funding round is ongoing with targetAmount = 1,000,000 USDC and totalRaised

() = 999,999 USDC

2. Alice attempts to invest the remaining 1 USDC by calling Funding#invest(1000000) (1
USDC in 6 decimals)

3. Before Alice's transaction is mined, an attacker directly transfers 1 wei of USDC to
the contract address using usdToken.transfer(fundingContract, 1)

4. The attacker's transaction increases usdToken.balanceOf(address(this)) from
999,999 USDC to 999,999.000001 USDC

5. When Alice's transaction executes, the checkInvestmentRequirements modifier
calculates totalRaised() + investmentAmount_ = 999,999.000001 + 1 = 1,000,000
.000001 > 1,000,000

6. Alice's transaction reverts with FundingExceedsTargetAmount, preventing her from
investing

7. The attacker can repeat this process to block any future investment attempts for
the cost of 1 wei plus gas

Tool Used
Manual Review

Recommendation
Implement a mechanism to handle partial investments when the requested amount
would exceed the target. Modify the invest function to allow investmentAmount_ = type
(uint256).max as a special value, automatically calculating the actual investment
amount as targetAmount - totalRaised(). This ensures that legitimate investors can
always invest up to the remaining capacity, regardless of small direct donations to the
contract.

function invest(uint256 investmentAmount_) public
checkInvestmentRequirements(investmentAmount_) nonReentrant
onlyWhenFundingOngoing whenNotPaused {

↪→

↪→

if (!kycRegister.hasCompletedKYC(msg.sender)) revert
CannotInvestWithoutKYC(msg.sender);↪→

// Handle maximum investment request
uint256 actualInvestmentAmount = investmentAmount_;
if (investmentAmount_ == type(uint256).max) {

actualInvestmentAmount = targetAmount - totalRaised();
}

usdToken.safeTransferFrom(msg.sender, address(this), actualInvestmentAmount);

8

fpUSDToken.mint(msg.sender, actualInvestmentAmount * 1e12);
_updateInvestorWithInvestment(msg.sender, actualInvestmentAmount);
emit InvestmentMade(msg.sender, actualInvestmentAmount, block.timestamp);

}

Additionally, update the checkInvestmentRequirements modifier to handle the special
case:

modifier checkInvestmentRequirements(uint256 investmentAmount_) {
// ... existing checks ...
if (investmentAmount_ != type(uint256).max && totalRaised() + investmentAmount_

> targetAmount) {↪→

revert FundingExceedsTargetAmount(totalRaised(), targetAmount);
}
// ... existing checks ...
_;

}

9

Issue M-2: Blacklisted investor in sequential refund
process leads to denial of service for all subsequent
refunds
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/13

Relevant Context
The Funding contract implements a refund mechanism through the refundInvestors
function that processes multiple investor refunds in a single transaction. The contract
uses USDC as the funding token, which implements a blacklisting mechanism controlled
by Centre Consortium. When an address is blacklisted by USDC, any transfer to that
address will revert, causing the entire transaction to fail.

Finding Description
The Funding#refundInvestors function processes refunds sequentially in a loop without
proper error handling for individual transfer failures. The vulnerability occurs in the
second loop where the function executes usdToken.safeTransfer(investorsToRefund[i], re
fundAmounts[i]) for each investor. Since USDC implements blacklisting functionality
where transfers to blacklisted addresses revert, a single blacklisted investor in the refund
queue will cause the entire refundInvestors transaction to revert.

When the safeTransfer call encounters a blacklisted address, the entire transaction
reverts. This means that the refund mechanism becomes completely unusable as long as
any blacklisted address remains in the investors array.

The root cause is the lack of error handling around the usdToken.safeTransfer call, which
does not account for the possibility of individual transfer failures due to USDC's
blacklisting mechanism.

Impact
The protocol suffers a denial of service where the function refundInvestors becomes
unusable. Legitimate investors cannot receive their refunds when a blacklisted address
exists anywhere in the refund queue, effectively blocking the entire refund process.

Tool Used
Manual Review

10

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/13
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L268
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L287
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L287

Recommendation
Implement a try-catch mechanism around the usdToken.safeTransfer call to handle
individual transfer failures gracefully:

// Then refund the investors
for (uint256 i = 0; i < amountOfInvestorsToRefund; i++) {

fpUSDToken.burn(investorsToRefund[i], refundAmounts[i] * 1e12);

try usdToken.safeTransfer(investorsToRefund[i], refundAmounts[i]) {
// Transfer successful, continue to next investor

} catch {
// Transfer failed (e.g., blacklisted address)
// Log the failure and continue processing other investors
emit RefundFailed(investorsToRefund[i], refundAmounts[i]);

// Remint the fpUSD tokens since transfer failed
fpUSDToken.mint(investorsToRefund[i], refundAmounts[i] * 1e12);

}
}

This approach ensures that failed transfers to USDC-blacklisted addresses do not
prevent legitimate investors from receiving their refunds, maintaining the protocol's
availability and allowing the refund process to continue for non-blacklisted addresses.

11

Issue M-3: Unclaimed bond tokens in distribution
contract leads to permanent loss of earned coupon
payments
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/14

This issue has been acknowledged by the team but won't be fixed at this time.

Relevant Context
The Bondi Finance protocol operates through a multi-phase bond distribution
mechanism:

1. Bond tokens are initially minted to the Distribution contract via Handler#emitBonds

2. Users claim bond tokens by calling Distribution#claimBonds, which burns their
FpUSD tokens and transfers bond tokens from the Distribution contract

3. Coupon distributions are calculated based on bond token balances at the time Dis
tribution#depositCoupon is called, with the snapshot block number recorded in Cou
ponMeta.blockNumber

4. The orchestrator backend service calculates Merkle tree distributions based on
these snapshots and calls Distribution#finaliseCoupon to set the Merkle root

5. Users claim their proportional coupon payments via Distribution#claimCoupon or D
istribution#claimCouponForUser

Finding Description
The Distribution contract doesn't account for scenarios where users have not claimed
their bond tokens before coupon distribution snapshots occur. When depositCoupon is
called, the snapshot includes all bond token balances at that block, including any
unclaimed bonds still held by the Distribution contract itself.

The orchestrator service calculates coupon distributions proportionally based on bond
token holdings, meaning the Distribution contract becomes entitled to coupon
payments for any unclaimed bonds in its balance. However, the contract lacks any
mechanism to sweep or recover these earned usdToken (coupon) payments, causing
them to become permanently locked within the contract.

This issue is exacerbated by the fact that the Distribution contract cannot claim its
own coupon allocation through normal means, as claimCoupon requires KYC validation
via kycRegister.hasCompletedKYC(msg.sender), and the contract address will not have
completed KYC procedures.

12

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/14

Impact
Protocol users suffer loss of coupon payments proportional to the amount of unclaimed
bond tokens at the time of each coupon distribution. The Distribution contract
permanently traps these coupon funds, with no recovery mechanism available. In
scenarios where a significant portion of bonds remain unclaimed (due to user inactivity,
lost access, or delayed claiming), the impact could be substantial across multiple
coupon periods.

Tool Used
Manual Review

Recommendation
Implement one of the following solutions:

Option 1: Modify coupon distribution calculation Update the implementation
specification to exclude the Distribution contract from coupon calculations in the
orchestrator backend service. This ensures unclaimed bonds do not earn coupons.

Option 2: Add administrative coupon recoveryModify claimCouponForUser to allow
claiming coupons earned by the Distribution contract:

function claimCouponForUser(address user, uint256 couponId, uint256 amount,
bytes32[] calldata proof) external onlyRole(RELAYER_ROLE) nonReentrant
whenNotPaused {

↪→

↪→

if (coupons[couponId].root == bytes32(0)) revert NotFinalized();
if (claimed[couponId][user]) revert AlreadyClaimed();

// Verify Merkle proof
bytes32 leaf = keccak256(abi.encodePacked(user, amount));
if (!MerkleProof.verify(proof, coupons[couponId].root, leaf)) revert

InvalidProof();↪→

claimed[couponId][user] = true;

// Skip KYC validation for Distribution contract and send to protocol treasury
if (user == address(this)) {

usdToken.safeTransfer(protocolTreasury, amount);
} else {

if (!kycRegister.hasCompletedKYC(user)) revert NoKYC(user);
usdToken.safeTransfer(user, amount);

}

emit CouponClaimed(user, couponId, amount);
}

13

IssueM-4: Direct tokentransfermanipulation leads
to asymmetric funding states across chains
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/16

Relevant Context
The Bondi protocol operates across multiple blockchains with a synchronized funding
mechanism. The Funding contract uses two token systems to track investments:

1. FpUSD tokens: Minted to investors at a 1:1e12 ratio when they call Funding#invest

2. AccountingToken: Minted by the Handler contract via Handler#mirrorDeposit to
represent investments made on other chains

The Funding#totalRaised function calculates the total funding across all chains by
summing the contract's usdToken balance with its AccountingToken balance. This total is
used to determine whether the funding target has been reached and controls
functionality like fund extraction and investor refunds.

Finding Description
The Funding#totalRaised function includes all usdToken held by the contract, regardless
of how those tokens arrived. The current implementation sums usdToken.balanceOf(addr
ess(this)) with accountingToken.balanceOf(address(this)), treating any direct token
transfers as legitimate investments.

An attacker can exploit this by directly transferring usdToken to the Funding contract on
one chain, artificially inflating the totalRaised calculation on that chain. This creates an
asymmetric state where different chains report different funding levels, even though
only legitimate investments (tracked via invest calls) should be mirrored across chains.

The vulnerability occurs because the totalRaised calculation does not distinguish
between tokens received through legitimate Funding#invest calls and tokens received
through direct transfers. Only tokens from invest calls are guaranteed to be mirrored to
other chains via the Handler#mirrorDeposit mechanism, as they trigger FpUSD minting
which serves as the canonical record of legitimate investments.

Impact
Legitimate investors suffer fund recovery complications when the funding target is not
reached globally. The attacker causes a subset of investors to become unable to
withdraw their funds through normal mechanisms, forcing manual administrative
intervention.

14

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/16
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L346

Proof of Concept
Consider a two-chain deployment with chains A and B, where the targetAmount is
1,000,000 USDC:

1. Initial State: Chain A has 400,000 USDC in legitimate investments, Chain B has
590,000 USDC in legitimate investments. Both chains show totalRaised() =
990,000 USDC (400,000 local + 590,000 mirrored or vice versa).

2. Attack Execution: An attacker directly transfers only 10,000 USDC to the Funding
contract on chain B, bypassing the invest function.

3. Asymmetric State:

• Chain A: totalRaised() = 990,000 USDC (still below target)

• Chain B: totalRaised() = 1,000,000 USDC (590,000 + 400,000 + 10,000 donated)

4. Funding Period Ends: When the funding period expires without additional
legitimate investments:

• Chain A: Target not reached, investors can call Funding#withdraw or Funding#re
fundInvestors

• Chain B: Target artificially reached, Funding#_checkGeneralRefundRequirements
reverts with FundingTargetAmountReached()

5. Fund Recovery Issue: Legitimate investors on chain B cannot recover their 590,000
USDC through normal withdrawal mechanisms. The only recovery path requires
administrative intervention via Funding#extractFunds, followed by manual
distribution to investors.

This attack is particularly effective when the funding is very close to the target, requiring
only a small donation to tip one chain over the threshold while others remain below it.

Tool Used
Manual Review

Recommendation
Modify the Funding#totalRaised function to only count funds that were received through
legitimate investment calls. Since FpUSD tokens are minted to investors at a 1:1e12 ratio
during legitimate investments, the calculation should use the total supply:

function totalRaised() public view returns(uint256) {
return (fpUSDToken.totalSupply() / 1e12) +

accountingToken.balanceOf(address(this));↪→

}

15

This ensures that only tracked investments (those that generate FpUSD tokens and can be
mirrored across chains) contribute to the funding target calculation, preventing
manipulation through direct token transfers. The fpUSDToken.totalSupply() accurately
represents the sum of all legitimate investments made through the Funding#invest
function across the funding period.

16

Issue M-5: Malicious users can block extractFunds
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/17

Summary
Malicious users can block extractFunds

Vulnerability Detail
When users invest funds via bondi, we have some security checks for invest function.
The invest amount cannot be less than minimumInvestmentAmount and we cannot exceed
the targetAmount.

The problem here is that malicious users can make the remaining invest amount less than
minimumInvestmentAmount. This will cause that nobody cannot invest into this funding.
Because we don't reach the targetAmount, the bondi team cannot extract these funds.

modifier checkInvestmentRequirements(uint256 investmentAmount_) {
// If the funding is on-going, then we can invest.
if (currentFundingPhase != FundingPhase.Ongoing) revert

FundingInInvalidPhase(uint(currentFundingPhase));↪→

// whaleNFT and ogNFT must exist.
if (address(whaleNFT) == address(0) || address(ogNFT) == address(0)) revert

InvestorNFTCannotBeZeroAddress();↪→

if (fundingPeriodLimit <= block.timestamp) revert
FundingPeriodFinished(fundingPeriodLimit);↪→

if (totalRaised() + investmentAmount_ > targetAmount) revert
FundingExceedsTargetAmount(totalRaised(), targetAmount);↪→

if (investmentAmount_ < minimumInvestmentAmount) revert
FundingBelowMinimum(investmentAmount_, minimumInvestmentAmount);↪→

uint256 investorBalance = usdToken.balanceOf(msg.sender);
// make sure that the msg.sender has enough balance to invest.
if (investorBalance < investmentAmount_) revert

InvestorBalanceInsufficient(investorBalance, investmentAmount_);↪→

_;
}

Impact
This will cause that users may fail to invest to meet the targetAmount.

17

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/17

Code Snippet
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1
d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L89-L98

Tool Used
Manual Review

Recommendation
Consider to allow investing any amount for the last investor. Or we don't allow the
remaining invest amount is less than minimumInvestmentAmount after one investment.

18

https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L89-L98
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L89-L98

Issue M-6: Final raised funds may be less than tar-
get amount
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/19

Summary
Final raised funds may be less than target amount

Vulnerability Detail
In Bondi, investors can invest funds into contracts in the funding period. If the funding
period is expired, then we reach the target funding amount, then the admin role will
extract funds. Otherwise, investors can withdraw their assets.

The problem here is that the actual funding amount is async among chains. It's possible
that we meet the target amount on one chain and don't meet the target amount on
another chain because we don't sync the deposit in other chain timely.

For example:

1. fundingPeriodLimit is timestamp X. The target amount is 100 USD.

2. Current raised amount is 95 USD.

3. In the last block before timestamp X, Alice invests 5 USD on chain A to reach the
target. Because we have a little bit time to sync the 5 USD to chain B.

4. It's quite possible that the total raised fund is 95 USD in timestamp X on Chain B.

5. Then investors can withdraw their funds on ChainB. After one withdraw, e.g 6 USD,
current total raised funds in Chain B is 89 USD.

modifier checkWithdrawalRequirements {
_checkGeneralRefundRequirements();
Investor memory currentInvestor = investorByAddress[msg.sender];
uint256 amountToWithdraw = currentInvestor.investedAmount;
if (amountToWithdraw == 0) revert FundingNoRegisteredFunds();
uint256 fundingBalance = usdToken.balanceOf(address(this));
if (fundingBalance < amountToWithdraw) revert

FundingBalanceInsufficient(fundingBalance, amountToWithdraw);↪→

_;
}

Impact
The final raised fund amount may be less than expected amount.

19

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/19

Code Snippet
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1
d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L103-L11
1

Tool Used
Manual Review

Recommendation
Add a grace period after the fundingPeriodLimit, and users can withdraw the fund back
when after fundingPeriodLimit + gracePeriod.

20

https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L103-L111
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L103-L111
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Funding.sol#L103-L111

Issue L-1: Redundant conditional logic in pause by-
passmechanism leads tounnecessarygasconsump-
tion
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/15

Finding Description
The BondToken#_update function implements a redundant conditional branch that
unnecessarily increases gas consumption for all transfer operations. The function
contains logic to handle admin operations during paused states by conditionally calling
either ERC20Upgradeable._update or super._update based on whether the operation is
performed by an admin during a paused state.

The current implementation checks:

if (isAdminOperation && paused()) {
ERC20Upgradeable._update(from, to, value);

} else {
super._update(from, to, value);

}

However, this conditional logic is redundant because pause validation occurs earlier in
the function. For non-admin operations, _requireNotPaused() is called at the beginning,
which will revert if the contract is paused. This means that if the function execution
reaches the conditional block, the contract is either not paused or the operation is being
performed by an admin.

The super._update call would invoke ERC20PausableUpgradeable._update, which has a whe
nNotPaused modifier. Since the pause check has already been performed for non-admin
operations, and admin operations are intended to bypass pause restrictions, the
function can safely call ERC20Upgradeable._update directly in all cases without the
conditional check.

The root cause is the implementation of unnecessary branching logic that duplicates
pause validation already performed earlier in the function flow. This results in additional
gas overhead for every token transfer operation due to the redundant conditional check
and the paused() state query.

Tool Used
Manual Review

21

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/15
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L115
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L121

Recommendation
Simplify the _update function by removing the conditional logic and calling ERC20Upgrade
able._update directly. This optimization is safe because:

1. Non-admin operations are already validated for pause state via _requireNotPaused
()

2. Admin operations are intended to bypass pause restrictions

3. The function will not reach this point if pausing should prevent the operation

function _update(address from, address to, uint256 value) internal
override(ERC20Upgradeable, ERC20PausableUpgradeable) {↪→

// Check if this is an admin operation
bool isAdminOperation = hasRole(DEFAULT_ADMIN_ROLE, msg.sender);

// Admin can extract tokens from blacklisted addresses but not send them
if (!isAdminOperation) {

_requireNotPaused();
if (isBlacklistedAddress[from]) revert BlacklistedAddress(from);

}
if (isBlacklistedAddress[to]) revert BlacklistedAddress(to);

// Update bond balances tracking
if (from != address(0)) {

uint256 currentSenderAmount = EnumerableMap.get(_bondBalanceByHolder, from);
EnumerableMap.set(_bondBalanceByHolder, from, currentSenderAmount - value);

}
(,uint256 currentReceiverAmount) = EnumerableMap.tryGet(_bondBalanceByHolder,

to);↪→

EnumerableMap.set(_bondBalanceByHolder, to, currentReceiverAmount + value);

- // For admin operations when paused, bypass the pausable check by calling
ERC20Upgradeable._update directly↪→

- if (isAdminOperation && paused()) {
- // Call the base ERC20Upgradeable._update directly to bypass pause checks
- ERC20Upgradeable._update(from, to, value);
- } else {
- // Normal flow - call all parent _update methods
- super._update(from, to, value);
- }
+ // Call ERC20Upgradeable._update directly since pause validation is handled

above↪→

+ ERC20Upgradeable._update(from, to, value);
}

This optimization reduces gas consumption for all transfer operations while maintaining
the same security guarantees and functional behavior.

22

IssueL-2: Userscanbypass theKYCcheckto redeem
the principles
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/20

Summary
Users can bypass the KYC check to redeem the principles

Vulnerability Detail
In Distribution contract, users can claim their principles after the principle distribution. In
redeemPrincipal, we will not allow non-KYC users to redeem principles.

The problem here is that users will redeem principles via holding bond tokens. If one
user's KYC is revoked, then this user can transfer his bond token to another KYC
accountant and withdraw principle directly.

function redeemPrincipal(uint256 burnAmt) external nonReentrant whenNotPaused {
if (!principalSet) revert PrincipalNotSet();
if (!principalDistributionStarted) revert PrincipalDistributionNotStarted();

// Validate burn amount
uint256 bal = bondToken.balanceOf(msg.sender);
if (burnAmt == 0 || bal < burnAmt) revert InvalidBurnAmount();

if (!kycRegister.hasCompletedKYC(msg.sender)) revert NoKYC(msg.sender);

Impact
Users who's KYC is revoked can still redeem principles.

Code Snippet
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1
d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Distribution.sol#L36
4-L382

Tool Used
Manual Review

23

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/20
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Distribution.sol#L364-L382
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Distribution.sol#L364-L382
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/Distribution.sol#L364-L382

Recommendation
Don't allow bond token transfer if this user's KYC is revoked.

24

IssueL-3: Missing initialization forERC1643contract
Source: https://github.com/sherlock-audit/2025-09-bondi-finance/issues/21

Summary
Missing initialization for ERC1643 contract

Vulnerability Detail
In BondToken, we will inherit ERC1643Upgradeable contract. In contract ERC1643Upgradeab
le, we wish to trigger __ERC1643_init to finish the related initialization work for ERC1643Up
gradeable. But we fail to trigger this in BondToken.

Because the __ERC1643_init_unchained is one empty function. So there is not any
security issue, just one best practice.

function initialize(
string memory bondName,
string memory bondSymbol,
address defaultAdmin,
address pauser,
address minter

) initializer public {
__ERC20_init(bondName, bondSymbol);
__ERC20Burnable_init();
__ERC20Pausable_init();
__AccessControl_init();
__Ownable_init(defaultAdmin);
__ERC20Permit_init(bondName);

_grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin);
_grantRole(PAUSER_ROLE, pauser);
_grantRole(EMITTER_ROLE, minter);

_supplyMinted = false;
}
function __ERC1643_init() internal onlyInitializing {

__ERC1643_init_unchained();
}

Impact
Best practice for initialization.

25

https://github.com/sherlock-audit/2025-09-bondi-finance/issues/21

Code Snippet
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1
d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L49-
L68

Tool Used
Manual Review

Recommendation

function __ERC1643_init(address initialOwner) internal onlyInitializing {
+ __Ownable_init(initialOwner);

__ERC1643_init_unchained();
}

function initialize(
string memory bondName,
string memory bondSymbol,
address defaultAdmin,
address pauser,
address minter

) initializer public {
__ERC20_init(bondName, bondSymbol);
__ERC20Burnable_init();
__ERC20Pausable_init();
__AccessControl_init();

- __Ownable_init(defaultAdmin);
+ __ERC1643_init(defaultAdmin);

__ERC20Permit_init(bondName);

_grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin);
_grantRole(PAUSER_ROLE, pauser);
_grantRole(EMITTER_ROLE, minter);

_supplyMinted = false;
}

26

https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L49-L68
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L49-L68
https://github.com/sherlock-audit/2025-09-bondi-finance/blob/10762cbcccb99097cb1d26562bd6ac19acea73d0/bondi-contracts-audit-v2.0.0/contracts/BondToken.sol#L49-L68

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

27

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue H-1: Funding sync may be blocked
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue M-1: Direct token donation enables denial of service on investment function
	Relevant Context
	Finding Description
	Impact
	Proof of Concept
	Tool Used
	Recommendation

	Issue M-2: Blacklisted investor in sequential refund process leads to denial of service for all subsequent refunds
	Relevant Context
	Finding Description
	Impact
	Tool Used
	Recommendation

	Issue M-3: Unclaimed bond tokens in distribution contract leads to permanent loss of earned coupon payments
	Relevant Context
	Finding Description
	Impact
	Tool Used
	Recommendation

	Issue M-4: Direct token transfer manipulation leads to asymmetric funding states across chains
	Relevant Context
	Finding Description
	Impact
	Proof of Concept
	Tool Used
	Recommendation

	Issue M-5: Malicious users can block extractFunds
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue M-6: Final raised funds may be less than target amount
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-1: Redundant conditional logic in pause bypass mechanism leads to unnecessary gas consumption
	Finding Description
	Tool Used
	Recommendation

	Issue L-2: Users can bypass the KYC check to redeem the principles
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Issue L-3: Missing initialization for ERC1643 contract
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation

	Disclaimers

